
Pinch: A simple borrow checked language built with
LLVMMLIR

Austin Shafer
amshafe2@ncsu.edu

North Carolina State University
Raleigh, North Carolina

CCS CONCEPTS
• Compilers; • Static Analysis;

KEYWORDS
Compilers, Borrow Checking

1 ABSTRACT
LLVM’s Multi-Level Intermediate Representation (MLIR)
project creates an extensible ecosystem of IR dialects that al-
lows high level languages to share optimizations. One of the
advertised abilities of MLIR is borrow checking: validation of
all variable access operations at compile time. Borrow check-
ing has been popularized by the Rust language, where it is
used to ensure safety and automatically free data without
garbage collection. In this paper, we create a simple bor-
row checked language built on LLVM MLIR, named Pinch.
Pinch uses an ownership graph encoded in MLIR operation
attributes to perform validation of memory accesses in a
lexical scope.

2 INTRODUCTION
Many high level domain specific languages have been built
using the LLVM compiler infrastructure. Many of these lan-
guages implement their own high level intermediate rep-
resentation (IR) on top of LLVM’s IR. Noticing that these
different projects kept re-implementing common functional-
ity for their high level IRs, LLVM created a new Multi-level
Intermediate Representation (MLIR).

LLVM MLIR allows for high level languages to share code
through the use of MLIR dialects. MLIR "dialects" capture the
operations of one language, allowing other projects and reuse
optimization and code generation passes. A new dialect can
be created for a domain specific language and then lowered
through other dialects to the LLVM IR dialect. Once the
high level MLIR has been converted to LLVM IR code can
be generated. MLIR is extensively used for Tensorflow, GPU
kernels, and affine transformations.
The core component of MLIR is the operation. Opera-

tions are very flexible, and can encapsulate both the action
itself along with any named attributes that have been at-
tached to it. Operation names follow the pattern "Dialect-
Name.OperationName". LLVM provides a tutorial for MLIR

that makes a simple tensorflow inspired language named
Toy.

One of the proposed capabilities of MLIR is the creation
of borrow checked languages. Borrow checking is a form
of static analysis which prevents unsafe operations and it
provides an alternative to runtimememory cleanup solutions
such as garbage collection. It verifies at compile time that
all pointer operations take place within the valid lifetime
of the variable they point to, and automatically frees data
when its lifetime ends. The Rust language has risen to new
popularity in recent years, showing that borrow checking
can be effectively implemented and utilized in practice.
Borrow checking attributes a lifetime to all named vari-

ables, each of which "own" some data. Data may only have
one owner, and temporary access to owned data can be
loaned out in the form of references. Multiple read-only
shared references or one mutable (read-write) reference may
be "borrowed", so long as the variable they borrow from is
still alive. Programmers in a borrow checked language are
forced to write programs that are valid when tested against
the borrow checker’s rules. Any violation of these safety
rules results in a compiler error.
Pinch is a simple borrow checked language inspired by

LLVM’s Toy language. It allows for simple pointer and arith-
metic operations, along with functions and basic variable
printing. All operations are validated by a borrow checker,
implemented as an LLVM Compiler Pass. The Pinch IR is im-
plemented as anMLIR dialect, which is then lowered through
the standard dialect into LLVM IR for code generation. All
Pinch MLIR operations are tagged with a source and destina-
tion to form an dataflow graph representing ownership. This
ownership graph is analysed during the borrow checking
pass to ensure program safety.

In this paper we present the following contributions:

• Show a possible implementation of a borrow checked
language in MLIR.

• Demonstrate how the available MLIR dialects aided
this development.

By implementing Pinch we show that MLIR is indeed
more than capable of creating borrow checked languages.
Although it is not likely that existing projects switch to MLIR

,
, Austin Shafer

overnight, we hope to demonstrate its potential to future
developers.

3 THE PINCH LANGUAGE
The pinch language is lexically intended to appear similar
to a watered-down version of the Rust language. It supports
integer addition and multiplication, function calls, pointers,
and has a builtin print function. The only types are a 32-bit
unsigned integer, represented by the token ’u32’, and a heap
allocated box. Lines are semicolon-terminated.

Declaring a variable begins with the token ’let’:
let a = 3;

Types are inferred automatically, as all variables are ei-
ther a u32 or a reference. In the code above variable ’a’ is
initialized as a constant, and is therefore a u32 type. We can
borrow a shared reference to ’a’ to create a pointer:
let a = 3;
let b = &a; // borrow the value owned by a
let c = &a;
let d = *b; // dereference pointer b

As shown above, multiple read-only references can exist at
one time. A mutable reference is exclusive however, and
does not allow this. Mutable references can be taken with
the ’&mut ’ operator.
Pinch also allows for heap allocation, which allows us to

demonstrate lifetimes of variables which do not end with the
termination of their lexical scope. The ’Box’ type is a pointer
to a heap allocated u32.
let b = box(3);

A ’Box’ type is created by calling the ’box’ function and
passing the value that the Box should be initialized with.

Functions follow the usual calling convention, and can be
defined as such:
fn function_name(arg: type, ...) -> return_type

We can now put it all together for a valid example:
fn main() {

let a = 4;
let b = &mut a;
print(*b);

}

This is an executable Pinch program, since it has a main
function. We create a stack allocated variable ’a’, borrow a
write-only mutable reference to it and store that reference in
variable ’b’, then dereference our pointer and print the value.
Variable ’a’ has a lifetime of this main function’s scope. This
is safe and will pass borrow checking because the mutable
reference exists inside the valid lifetime for the variable it
references. Since there is a mutable reference borrowed, ’a’
cannot be used.

Now let’s take a look at some examples where the Pinch
borrow checker will generate errors as a result of unsafe
operations. Borrow checking in Pinch follows a few rules:

• Data is owned by one and only one named variable
• Multiple shared references pointing to an owned data
can be borrowed

• One mutable reference pointing to an owned data can
be borrowed

References essentially model the multiple reader/one writer
problem. Shared references are read only pointers and mu-
table references are exclusive writable pointers. Only one
of the latter two rules can be in place at once. If a mutable
pointer exists then no shared references may exist.

This can be demonstrated with an example. The following
will fail the borrow check:
let a = 4;
let b = &mut a;
let c = &a; // generates an error

Variable ’b’ is a mutable reference to ’a’ which is active for the
rest of this lexical scope. As a result, we cannot take another
shared reference to ’a’, since it is already borrowed mutably.
Pinch will prevent this from compiling as its execution could
be unsafe if the value was updated through ’b’ while being
read by ’c’.
Another check performed is ensuring that references do

not outlive the variable they point to. The lifetimes of vari-
ables are bound to their lexical scope, and references to them
should not exceed this:
fn invalid_function(arg: &u32) -> &u32 {

let ret = *arg * 2;
return &ret;

}

In the invalid function above we stack allocate a u32 variable
named ’ret’. We then return a reference to ’ret’, which is a
pointer to its stack address. When the scope ends ’ret’ will be
deallocated and the reference we return would be a dangling
pointer. Pinch detects this, and generates an error that the
reference outlives its value.
Although this example is demonstrated with stack allo-

cated data, it generalizes to any data type. If a reference to a
heap allocation outlives the duration of that heap allocation
the same problem exists.

4 CHALLENGES
The largest challenge by far was understanding the LLVM
programming interface and how to work with MLIR. There
are some documents online that help the development pro-
cess, but you need to get up to speed on both MLIR’s api and
LLVM’s utility classes. It was also tricky to find an extensi-
ble solution to borrow checking, and trying to investigate

Pinch: A simple borrow checked language built with LLVM MLIR
,
,

what Rust does was not helpful, as their IR is nothing like
MLIR. Most of the transformations Rust does with IR lower-
ing involves canonicalization of complex Rust syntax. Once
I settled on the idea of an ownership graph, things became
much more clear. Lowering to code generation also posed a
large problem, mostly because I was not familiar with LLVM.
Significant rewrites were needed, and I could not reference
the Toy examples.

5 IMPLEMENTATION
Pinch’s borrow checking is implemented as an LLVM MLIR
compiler pass. An AST is first generated, and Pinch MLIR
is generated in its own dialect. Once the MLIR is generated
the borrow checker runs, emitting any errors as a result of
unsafe operations. After the borrow checking has succeeded,
functions can be inlined and the high level Pinch MLIR can
be lowered to LLVM IR through the Standard MLIR dialect.
Code can then be generated from the LLVM IR as usual.
The lexer and parser for AST construction are a heavily

modified version of Toy. Toy is a language for performing
tensor calculations, and so large modifications were needed
to remove tensors and add references. Pinch only has two
base data types: a heap-allocated Box and an unsigned 32-
bit integer (ui32). Toy also does some type detection and
reshaping automatically, and so extra logic was added to
Pinch’s parser to check types, such as preventing passing a
reference as an integer.

Once a reference-aware AST had been generated we could
construct the Pinch IR. Pinch’s MLIR dialect contains some
common operations, such as constants and function calls,
along with some borrow-checking specific operations. The
borrow checking operations signify the transfer or reference
of data. The move operation moves ownership of a value
from one named variable to another. The borrow operations
create a reference to their operand. All pinch operations
track ownership through attribute dictionaries, which need
to be constructed by the parser.
The first pass to run on the Pinch MLIR is the borrow

checking pass. This is effectively the portion of the project
which is the actual "borrow checker". The borrow checker
processes each function in parallel and verifies all operations
within that functions lexical scope. For simplicity, the lifetime
during which a variable is alive is based on that variable’s
lexical scope. When that variables lexical scope ends it will
be freed.
To explain the borrow checker we first need to examine

the attributes that make up the ownership graph. All oper-
ations are tagged with attributes specifying the source and
destination of values that they use. These attributes hold a
string uniquely identifying the name of the owner of that
value. As it processes each operation the borrow checker
tracks information for each owner, such as the type and

number of references to its data. If a name has not been
seen before, then a new owner is made from it so it can be
identified in later operations.

Below is a an example which moves the owned data from
variable b to variable a:
let a = 2;
let b = a;

And here is the Pinch MLIR generated:
%0 = pinch.constant {dst = "a"} 2
%1 = "pinch.move"(%0) {dst = "b", src = "a"}

: (ui32) -> ui32

First a new SSA value is initialized from a constant. The
destination of this constant operation is marked as ’a’ in
the ’dst’ attribute. This signifies that we are creating a new
owner. With the "pinch.move" operation we are once again
creating a new owner based on the ’dst’ attribute, but we
also specify where the moved data originated from with the
’src’ attribute. When the borrow checker is validating this
operation it can mark owner ’a’ as non-resident, and any
further access of ’a’ should trigger an error.
After the borrow checker has verified that all operations

are safe we are ready to generate LLVM IR. MLIR encap-
sulates LLVM IR as the LLVM dialect, which other dialects
can be lowered to. This was implemented as multiple passes
lowering the Pinch MLIR down to code generation. Two low-
ering passes had to be written for this to work: lowering to
the standard dialect, and lowering from the standard dialect
to the LLVM dialect. Additional passes were reused from
the MLIR infrastructure, such as inlining function calls and
removing common subexpressions. LLVM also takes care of
generating code from the LLVM MLIR dialect.
Although the lowering process is inspired by Toy, the

implementation of its lowering passes differs significantly.
Pinch needs to stack allocate variables and create pointers to
those allocations whenever a borrow occurs. Loads also need
to be generated whenever a variable is used or dereferenced.

6 PROGRAM EXAMPLES
Please note that due to formatting some MLIR operations
may span multiple lines. Indentation has been added on
wrapped lines in an attempt to make things more readable.
Also note that compilation errors shown have been trimmed.
In practice, all errors include the source code location that
caused them.

First let’s look at a valid Pinch program:
fn main() {

let a = 1 + 2;
let b = &mut a;
print(*b);

}

,
, Austin Shafer

Herewemake a stack variable ’a’, borrow amutable reference
to it, and print the data that reference points to. This will
generate the following MLIR:
module {

func @main() attributes {src = []} {
%0 = pinch.constant {dst = ""} 1
%1 = pinch.constant {dst = ""} 2
%2 = pinch.add %0, %1 {dst = "a"}

: ui32
%3 = "pinch.borrow_mut"(%2)

{dst = "b", src = "a"}
: (ui32) -> memref<1xui32>

%4 = "pinch.deref"(%3)
{dst = "", src = "b"}
: (memref<1xui32>) -> ui32

pinch.print %4 : ui32
pinch.return {src = ""}

}
}

If executed, this will print the value 3. The first half of this
MLIR looks similar to the example Toy language, and the
latter portion is much more specific to Pinch. Temporary
variables have their ’dst’ attribute set to an empty string to
signify that they are temporary and not owned by a named
variable in the original source code. This code is safe and
will pass borrow checking.

Since we are discussing borrow checking, let’s examine
an example where the borrow checker generates an error:
let a = 42;
let b = &mut a;
let c = &a; // generates an error

This is our example from earlier, where we incorrectly tried
to take a shared reference after a mutable reference. The
following MLIR is generated:
module {

func @main() attributes {src = []} {
%0 = pinch.constant {dst = "a"} 42
%1 = "pinch.borrow_mut"(%0)

{dst = "b", src = "a"}
: (ui32) -> memref<1xui32>

%2 = "pinch.borrow"(%0)
{dst = "c", src = "a"}
: (ui32) -> memref<1xui32>

pinch.return {src = ""}
}

}

The borrow checker can easily track the referencing of an
owned value. The "pinch.borrow_mut" instruction observes
that owner ’a’ was named as the source for this operation,
and it marks ’a’ as having a mutable reference loaned out.

When the following "pinch.borrow" instruction observes the
same source owner ’a’, it will also check that there are no
mutable references in existence. This check will fail, and will
generate the following compiler error:
error: Cannot borrow a shared reference while a
mutable reference is active

Finally, we will examine a more complicated scenario
where the lifetime of a variable is not tied to a lexical scope:
fn consume_box(a: Box) -> u32 {

return *a;
}
fn main() {

let a = box(2);
let b = consume_box(a);
let c = *a;

}

This program introduces us to the Box type. The box is a
heap-allocated integer, and Pinch needs to free the box when
its lifetime ends. This example demonstrates how sometimes
the lifetime of owned data is not the lexical scope that data
was created in. We create a box, and move it into the ’con-
sume_box’ function when we pass it by value. We then try
to access the box after it was moved, which is not allowed.
Let’s take a look at the generated MLIR and see where the
"pinch.drop" instruction was generated to free this variable:
module {

func @consume_box(%arg0: !pinch.box)
-> ui32 attributes
{src = ["a"], sym_visibility = "private"}

{
"pinch.drop"(%arg0) : (!pinch.box) -> ()
%0 = "pinch.deref"(%arg0)

{dst = "return", src = "a"}
: (!pinch.box) -> ui32

pinch.return %0 : ui32 {src = ""}
}
func @main() attributes {src = []} {
%0 = "pinch.box"()

{dst = "a", value = 2 : ui32}
: () -> !pinch.box

%1 = "pinch.move"(%0)
{dst = "", src = "a"}
: (!pinch.box) -> !pinch.box

%2 = pinch.generic_call @consume_box(%1)
{dst = "b"}
: (!pinch.box) -> ui32

%3 = "pinch.deref"(%0)
{dst = "c", src = "a"}
: (!pinch.box) -> ui32

pinch.return {src = ""}
}

Pinch: A simple borrow checked language built with LLVM MLIR
,
,

}%

Notice that "pinch.drop" was generated in ’consume_box’
instead of in the main function. Pinch detected that the box
was moved out of main, and that the box was not moved out
of ’consume_box’. Since the box was moved, it is no longer
available in this scope, and our attempts to dereference it
will be met with the following error generated by the borrow
checker:
error: Trying to dereference already moved variable

The concept of an ownership graph makes this example
possible. Because we are keeping track of what data belongs
to what owner at operation-level granularity we can per-
form effective static analysis on the program. As long as
the programmer obeys a few simple rules mandated by our
borrow checker we can generate safe code and automatically
generate drop operations to free data.

7 MLIR DEVELOPMENT
In hindsight, MLIR allowed for an incredible turnaround
time on this project. Reusing existing dialects and the LLVM
infrastructure allowed a single developer to completely im-
plement a borrow checked language in 7 weeks. Although
the core contribution of this project is the borrow checker,
significant work was required to build the frontend and the
lowering passes. The lowering passes in particular required
extra effort to manage types and memory allocations with-
out hurting performance. As a result, we highly recommend
MLIR be used for any future projects such as borrow check-
ing which involve high level static analysis at compile time.

8 RELATEDWORK
Rust [1] is by far the most popular language with built in
borrow checking. It is widely used in industry and has seen
constant development for many years. It is built on LLVM,
and has two levels of higher IR that are Rust-specific. Rust
also supports complicated lifetime tracking that is not re-
lated to the lexical scope of a variable. Rust was one of the
motivating examples for the creation of MLIR.

Other borrow checked research languages exist, although
they see significantly less use than Rust. Carp [4] is a research
language similar to Lisp. Carp introduces many Rust-like
features such as static type inference and ownership tracking.
Dyon [3] is another small language which was designed to
be an interpreted version of Rust. It interfaces with Rust code
and follows similar syntax and borrow checking rules.

9 LESSONS LEARNED
This project gave me significantly more experience working
with LLVM, and I can’t say I enjoyed it. This is mostly due to
the fact that I am not well-versed in complex C++ features,
and I had to learn as I went. The majority of my time was

not spent working on designing my own MLIR, but reading
LLVM code trying to learn what format it expected data in. I
walked away with a massive appreciation for the infrastruc-
ture that LLVM has built. It may not be an easy code base to
learn, but it is incredibly impressive.

10 CONCLUSION
In this project we demonstrate a reference implementation
of borrow checking in MLIR using analysis of an ownership
graph. We document the steps taken, from AST creation
to code generation, and show how MLIR can promote code
reuse. Based on our findings, we argue that any new language
interested in implementing a borrow checker should do so
utilizing MLIR.

REFERENCES
[1] Cosmin Cartas. 2019. Rust – The Programming Language for Every

Industry. ECONOMY INFORMATICS JOURNAL 19 (09 2019), 45–51.
https://doi.org/10.12948/ei2019.01.05

[2] Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River
Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastructure
for the End of Moore’s Law.

[3] Sven Nilsen. 2020. Dyon. https://github.com/pistondevelopers/dyon
[4] Erik Svedäng. 2020. Carp. https://github.com/carp-lang/Carp

https://doi.org/10.12948/ei2019.01.05
https://github.com/pistondevelopers/dyon
https://github.com/carp-lang/Carp

	1 Abstract
	2 Introduction
	3 The Pinch Language
	4 Challenges
	5 Implementation
	6 Program Examples
	7 MLIR Development
	8 Related Work
	9 Lessons Learned
	10 Conclusion
	References

